Targeting focal adhesion kinase with dominant-negative FRNK or Hsp90 inhibitor 17-DMAG suppresses tumor growth and metastasis of SiHa cervical xenografts.

نویسندگان

  • Joerg Schwock
  • Neesha Dhani
  • Mary Ping-Jiang Cao
  • Jinzi Zheng
  • Richard Clarkson
  • Nikolina Radulovich
  • Roya Navab
  • Lars-Christian Horn
  • David W Hedley
چکیده

Focal adhesion kinase (FAK), a nonreceptor protein tyrosine kinase and key modulator of integrin signaling, is widely expressed in different tissues and cell types. Recent evidence indicates a central function of FAK in neoplasia where the kinase contributes to cell proliferation, resistance to apoptosis and anoikis, invasiveness, and metastasis. FAK, like other signaling kinases, is dependent on the chaperone heat shock protein 90 (Hsp90) for its stability and proper function. Thus, inhibition of Hsp90 might be a way of disrupting FAK signaling and, consequently, tumor progression. FAK is expressed in high-grade squamous intraepithelial lesions and metastatic cervical carcinomas but not in nonneoplastic cervical mucosa. In SiHa, a cervical cancer cell line with characteristics of epithelial-to-mesenchymal transition, the stable expression of dominant-negative FAK-related nonkinase decreases anchorage independence and delays xenograft growth. FAK-related nonkinase as well as the Hsp90 inhibitor 17-dimethylaminoethylamino-17-demethoxygeldanamycin both negatively interfere with FAK signaling and focal adhesion turnover. Short-term 17-dimethylaminoethylamino-17-demethoxygeldanamycin treatment prolongs survival in a SiHa lung metastasis model and chronic administration suppresses tumor growth as well as metastatic spread in orthotopic xenografts. Taken together, our data suggest that FAK is of importance for tumor progression in cervical cancer and that disruption of FAK signaling by Hsp90 inhibition might be an avenue to restrain tumor growth as well as metastatic spread.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Blocking heat shock protein-90 inhibits the invasive properties and hepatic growth of human colon cancer cells and improves the efficacy of oxaliplatin in p53-deficient colon cancer tumors in vivo.

We recently showed that inhibition of heat shock protein 90 (Hsp90) decreases tumor growth and angiogenesis in gastric cancer through interference with oncogenic signaling pathways. However, controversy still exists about the antimetastatic potential of Hsp90 inhibitors. Moreover, in vitro studies suggested that blocking Hsp90 could overcome p53-mediated resistance of cancer cells to oxaliplati...

متن کامل

Requirement for focal adhesion kinase in the early phase of mammary adenocarcinoma lung metastasis formation.

An increased expression of focal adhesion kinase (FAK) in a variety of cancers is associated with a poor disease prognosis. To study the role of FAK in breast tumor growth and metastasis formation, we used conditional doxycycline-regulated expression of a dominant-negative acting splice variant of FAK, FAK-related non-kinase (FRNK), in MTLn3 mammary adenocarcinoma cells in a syngeneic Fischer 3...

متن کامل

Paxillin binding is not the sole determinant of focal adhesion localization or dominant-negative activity of focal adhesion kinase/focal adhesion kinase-related nonkinase.

The carboxy-terminal 150 residues of the focal adhesion kinase (FAK) comprise the focal adhesion-targeting sequence, which is responsible for its subcellular localization. The mechanism of focal adhesion targeting has not been fully elucidated. We describe a mutational analysis of the focal adhesion-targeting sequence of FAK to further examine the mechanism of focal adhesion targeting and explo...

متن کامل

Enhanced tumor cell radiosensitivity and abrogation of G2 and S phase arrest by the Hsp90 inhibitor 17-(dimethylaminoethylamino)-17-demethoxygeldanamycin.

PURPOSE Because of the potential for affecting multiple signaling pathways, inhibition of Hsp90 may provide a strategy for enhancing tumor cell radiosensitivity. Therefore, we have investigated the effects of the orally bioavailable Hsp90 inhibitor 17-(dimethylaminoethylamino)-17-demethoxygeldanamycin (17-DMAG) on the radiosensitivity of human tumor cells in vitro and grown as tumor xenografts....

متن کامل

Combination therapy with HSP90 inhibitor 17-DMAG reconditions the tumor microenvironment to improve recruitment of therapeutic T cells.

Ineffective recognition of tumor cells by CD8+ T cells is a limitation of cancer immunotherapy. Therefore, treatment regimens that coordinately promote enhanced antitumor CD8+ T-cell activation, delivery, and target cell recognition should yield greater clinical benefit. Using an MCA205 sarcoma model, we show that in vitro treatment of tumor cells with the HSP90 inhibitor 17-DMAG results in the...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Cancer research

دوره 69 11  شماره 

صفحات  -

تاریخ انتشار 2009